research

Our research broadly focusses on how terrestrial ecosystems respond to change. We’re especially interested in the role that plants and soils play in this response, and the consequences for ecosystem functioning, of both managed and natural ecosystems. We focus on the implications for aboveground and belowground biodiversity conservation, the sustainability of food production systems, and carbon cycle feedbacks.

Our research falls into three main themes:

Ecosystem response to global change and carbon cycle feedbacks. How do different ecosystems respond to droughts or extreme rainfall, nitrogen deposition, grazing animals, or changes in management? What are the determinants of those responses, can we model or predict them, and what are the implications for soil organic matter storage and greenhouse gas emissions? Current projects that address these questions are SHIFTFEEDBACK, KLIGRAS, Viral impacts on GHG emissions, SOILGUARD, SOILPROS and the PhD projects of Fangbin Hou, Emma Polmann and Nan Zhang.

Mechanisms through which plant-microbe interactions affect ecosystem functioning. How do plants and microbes interact? What is the role of plant traits, such as root system architecture, root exudates, or symbiotic associations? Do changes in soil microbial communities feed back to plant growth? Can we modify interactions between plants and microbes to improve ecosystem functioning, or to increase the resilience to climate change? Current projects that address these questions are SHIFTFEEDBACK, KLIGRAS, Viral impacts on GHG emissions and the PhD projects of Fangbin Hou, Emma Polman and Nan Zhang.

Links between soil biodiversity and functioning, and the promotion and protection of soil biodiversity. What are the fundamental drivers of soil biodiversity? How is soil biodiversity structured by climate, soil type, plant community composition, and land use? Can we optimise soil biodiversity to enhance soil functioning in agricultural systems? Current projects that address these questions are SOILGUARD, SOILPROS and KLIGRAS.

publication highlights

2025

Brangarí AC, Knorr MA, Frey SD, Rousk J. Shifts in microbial thermal traits mitigate heat-induced carbon losses in soils, 2025. Global Change Biology, 31:e70579. doi.org/10.1111/gcb.70579

Brangarí AC, Rousk J. A unified representation of the temperature dependences of soil microbial growth and respiration, 2025. Communications Earth & Environment 6, 724. doi.org/10.1038/s43247-025-02707-1

Lladó, S. Maskell, L., Jones, L., Yacoub, C., Cueto, P.S., Bosch, M., Philippot, L., Hartmann, M., Galindo, T., Goede, R., Bongiorno, J., Morriën, E., de Vries, F., Soliveres, S., Maestre, F.T., Sessitsch, A., Gorfer, M., Dehnhardt, A., Schmidt, K., Van de Sande, T., Hestbjerg, H., Alsina, I., García, F., Mataix, J., Toth, Z., Pennanen, T., Brennan, F., Finn, J.,  Gaitán, J.J., Barral, M.P., Nguefack, J.,   Ngamvisitsil, R., Stathopoulos, N., Zanis, P., Vlacheas, P., Chubb, L., Sagarna, J., Muñoz, M., Griffiths, R., Robinson, D., Harrison, P.A. Bridging soil biodiversity to human wellbeing: a framework for future global soil assessments. One Earth8(8). doi.org/10.1016/j.oneear.2025.101391

Zhang, S., Kuzyakov, Y., Jia, Y-Z., Bai, E. Morriën, E. Liang, A. Cascading effects within soil food web amplify fungal biomass and necromass production. Global Change Biology, 31, 5: e70235. doi.org/10.1111/gcb.70235

Kinsbergen, D. T., Kooijman, A. M., Morriën, E., English, K., & Oostermeijer, J. G. B. (2025). Abiotic and biotic drivers of soil microbial diversity in an intensively grazed natural ecosystem. npj Biodiversity4(1), 10. doi.org/s44185-025-00081-x

de Goede, S. P., Hannula, S. E., Jansen, B., & Morriën, E. (2025). Fungal-mediated soil aggregation as a mechanism for carbon stabilization. The ISME Journal19(1), wraf074. doi.org/10.1093/ismejo/wraf074

van Eijnatten, A. L., van Zon, L., Manousou, E., Bikineeva, M., Wubs, E. J., van der Putten, W. H., … & Snoek, L. B. (2025). SpeSpeNet: An interactive and user-friendly tool to create and explore microbial correlation networks. ISME Communications, ycaf036. doi.org/pubmed.ncbi.nlm.nih.gov/40800619/

Hou, F., Hinojosa Sánchez, L., Enderle, E., Jansen, B., Morriën, E., de Vries, F.T. Root exudates from drought-affected plants increase soil respiration across a range of grassland species. Soil Biology and Biochemistry. doi:10.1016/j.soilbio…109731

2024

C. G. Knight, O. Nicolitch, R. I. Griffiths, T. Goodall, B. Jones, C. Weser, H. Langridge, J. Davison, A. Dellavalle, N. Eisenhauer, K. B. Gongalsky, A. Hector, E. Jardine, P. Kardol, F. T. Maestre, M. Schädler, M. Semchenko, C. Stevens, M. Α. Tsiafouli, O. Vilhelmsson, W. Wanek,  F. T. de Vries (2024). Soil microbiomes show consistent and predictable responses to extreme events. Nature 636, 690–696 (2024). doi.org/10.1038/s41586-024-08185-3

E. Enderle, F. Hou, L. Hinojosa, H. Kottman, N. Kasirga, F. T. de Vries (2024). Plant-soil feedback responses to drought are species-specific and only marginally predicted by root traits. Plant Soildoi.org/10.1007/s11104-024-07049-z

Gliesch, M., Sanchez, L. H., Jongepier, E., Martin, C., Hu, Y., Tietema, A., & de Vries, F. T. (2024). Heathland management affects soil response to drought. Journal of Applied Ecology, 00, 1–13. doi.org/10.1111/1365-2664.14641

2023

Franciska de Vries, Jennifer Lau, Christine Hawkes, Marina Semchenko. Plant–soil feedback under drought: does history shape the future? Trends in Ecology & Evolution, Volume 38, Issue 8, 2023, Pages 708-718, doi.org/10.1016/j.tree.2023.03.001

Heredia-Acuña, C., Semchenko, M., & De Vries, F. T. (2023). Root litter decomposition is suppressed in species mixtures and in the presence of living roots. Journal of Ecology, 111, 2519–2531. doi.org/10.1111/1365-2745.14207

De Long, J.R., Heinen, R., Heinze, J., Morriën, E., Png Gouchen, K., Sapsford, S., Teste, F. and Fry, E.L. 2023. Plant-soil feedback: incorporating untested influential drivers and reconciling terminology. Plant and Soil, Marschner Review, Special Issue on Plant-Soil Feedback, doi:10.1007/s11104-023-05908-9

Ye Tian, Andreas Schindlbacher, Carolina Urbina Malo, Chupei Shi, Jakob Heinzle, Steve Kwatcho Kengdo, Erich Inselsbacher, Werner Borken, Wolfgang Wanek, Long-term warming of a forest soil reduces microbial biomass and its carbon and nitrogen use efficiencies, Soil Biology and Biochemistry, Volume 184, 2023, 109109, doi.org/10.1016/j.soilbio.2023.109109

Suarez C, Hackl T, Wilen BM, Persson F, Hagelia P, Jetten MSM, Dalcin Martins P. Novel and unusual genes for nitrogen and metal cycling in Planctomycetota- and KSB1-affiliated metagenome-assembled genomes reconstructed from a marine subsea tunnel. FEMS Microbiol Lett. 2023;370. doi:10.1093/femsle/fnad049

Clocchiatti A., Hannula S.E., Hundscheid M.P.J., klein Gunnewiek P.J.A., de Boer W., Utilizing woody materials for fungal-based management of soil nitrogen pools, Applied Soil Ecology, Volume 181, 2023, 104663, ISSN 0929-1393, doi.org/10.1016/j.apsoil.2022.104663.

Shi, C., Urbina-Malo, C., Tian, Y., Heinzle, J., Kwatcho, Kengdo, S., Inselsbacher, E., Borken, W., Schindlbacher, A., & Wanek, W. (2023). Does long-term soil warming affect microbial element limitation? A test by short-term assays of microbial growth responses to labile C, N and P additions. Global Change Biology, 29, 2188 2202. doi.org/10.1111/gcb.16591

Tian, Y., Shi, C., Malo, C.U. et al. Long-term soil warming decreases microbial phosphorus utilization by increasing abiotic phosphorus sorption and phosphorus losses. Nat Commun 14, 864 (2023). doi.org/10.1038/s41467-023-36527-8

Oram, N.J., Ingrisch, J., Bardgett, R.D., Brennan, F., Dittmann, G., Gleixner, G., Illmer, P., Praeg, N., Bahn, M. (2023). Drought intensity alters productivity, carbon allocation and plant nitrogen uptake in fast versus slow grassland communities. Journal of Ecology, 111: 1681-1699. doi.org/10.1111/1365-2745.14136

2022

Albert C. Brangarí, Blandine Lyonnard, Johannes Rousk. Soil depth and tillage can characterize the soil microbial responses to drying-rewetting. Soil Biology and Biochemistry, 2022, 173, 108806 doi.org/10.1016/j.soilbio.2022.108806

S. Emilia Hannula, Elly Morriën. Will fungi solve the carbon dilemma? Geoderma, Volume 413, 2022, 15767 doi.org/10.1016/j.geoderma.2022.115767

Rousk J, C Brangarí A. Do the respiration pulses induced by drying-rewetting matter for the soil-atmosphere carbon balance? Global Change Biology. 2022 Jun;28(11):3486-3488. doi: 10.1111/gcb.16163

Alex Williams,  Holly Langridge,  Angela L. Straathof,  Howbeer Muhamadali,  Katherine A. Hollywood,  Royston Goodacre,  Franciska T. de Vries. Root functional traits explain root exudation rate and composition across a range of grassland species. J Ecol. 2022; 110: 21–33.  doi.org/10.1111/1365-2745.13630

2021

Clocchiatti A., Hannula S.E., Hundscheid M.P.J., klein Gunnewiek P.J.A. and de Boer W. (2021), Stimulated saprotrophic fungi in arable soil extend their activity to the rhizosphere and root microbiomes of crop seedlings. Environ Microbiol, 23: 6056-6073. doi.org/10.1111/1462-2920.15563

Elisabeth C Oeller, Robert E Clark, Leonardo Hinojosa, Kevin M Murphy, David W Crowder, Effects of Agronomic Practices on Lygus spp. (Hemiptera: Miridae) Population Dynamics in Quinoa, Environmental Entomology, Volume 50, Issue 4, August 2021, Pages 852–859,  doi.org/10.1093/ee/nvab039

Johanna Mayerhofer, Barbara Thuerig, Thomas Oberhaensli, Eileen Enderle, Stefanie Lutz, Christian H Ahrens, Jacques G Fuchs, Franco Widmer, Indicative bacterial communities and taxa of disease-suppressing and growth-promoting composts and their associations to the rhizoplane, FEMS Microbiology Ecology, Volume 97, Issue 10, October 2021, doi.org/10.1093/femsec/fiab134

2020

Albert C. Brangarí, Stefano Manzoni, Johannes Rousk. A soil microbial model to analyze decoupled microbial growth and respiration during soil drying and rewetting, Soil Biology and Biochemistry, 2020; 148:107871 doi.org/10.1016/j.soilbio.2020.107871

2019

Hinojosa, L., Sanad, M.N.M.E., Jarvis, D.E., Steel, P., Murphy, K. and Smertenko, A. (2019). Impact of heat and drought stress on peroxisome proliferation in quinoa. Plant Journal, 99: 1144-1158. doi.org/10.1111/tpj.14411

2018

Dalcin Martins P, Danczak RE, Roux S, et al. Viral and metabolic controls on high rates of microbial sulfur and carbon cycling in wetland ecosystems. Microbiome. 2018;6(1):138. doi:10.1186/s40168-018- 0522-4

Hinojosa L, Matanguihan JB, Murphy KM. Effect of high temperature on pollen morphology, plant growth and seed yield in quinoa (Chenopodium quinoa Willd.). J Agro Crop Sci. 2019; 205: 33–45 doi.org/10.1111/jac.12302

2017

Morriën, E., Hannula, S., Snoek, L. et al. Soil networks become more connected and take up more carbon as nature restoration progresses. Nat Commun 8, 14349 (2017). doi.org/10.1038/ncomms14349

Dalcin Martins P, Hoyt DW, Bansal S, et al. Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands. Glob Chang Biol. 2017;23(8):3107- 3120. doi:10.1111/gcb.13633

Design a site like this with WordPress.com
Get started